

September 9, 2009

Mr. Leo Francendese On-Scene Coordinator U.S. Environmental Protection Agency 61 Forsyth Street, SW 11th Floor Atlanta, Georgia 30303

Subject: Surface Water Sampling Letter Report

Barite Hills Nevada Goldfields Site

McCormick, McCormick County, South Carolina

Contract No. EP-W-05-053

Technical Direction Document (TDD) No.: TNA-05-003-0049

Dear Mr. Francendese:

Oneida Total Integrated Enterprises (OTIE), Superfund Technical Assessment and Response Team (START), prepared this Letter Report detailing activities performed in support of the Barite Hills Nevada Goldfields site (the site) investigation under Contract Number (No.) EP-W-05-053, Technical Direction Document (TDD) No. TNA-05-003-0049. All activities and procedures were performed in accordance with the EPA Science and Ecosystems Support Division (SESD) Region 4 Field Branches Quality System and Technical Procedures dated November 2007, and the EPA-approved site-specific Quality Assurance Project Plan (QAPP).

Under this work assignment, START was tasked with conducting water sampling of the Main Pit lake (the lake), Hawes Creek tributary (the creek), and newly installed monitoring wells on-site. A site location map is provided in Attachment A. Two samples were collected from the lake and one sample was collected at seep location 0 along the creek. In addition, The EPA Remedial Branch installed two monitoring wells at the site during the month of July 2009. OTIE developed and sampled these monitoring wells (MW-01 and MW-02). Water quality parameters were prior to water sampling. Water quality parameters from July 2009 and a comparative table of potentially applicable standards can be found in Attachment B with corresponding graphs. Laboratory analytical data is in Attachment C. The Health and Safety Plan (HASP) can be found in Attachment D.

Surface Water Sampling Letter Report Barite Hills site Page 2 of 3

Site Background

The site is an abandoned pit mine located approximately 3 miles south of McCormick, McCormick County, South Carolina between US Highway (Hwy) 378 and US Hwy 221 on the northern side of Road 30. The site is located in a relatively remote area; there are no buildings, homes, or commercial buildings within 0.5 mile of the site boundary. The site is located along a topographic high ridge area forming the headwaters of the creek. The topography of the area consists of rolling hills with ridgelines at an elevation of about 500 feet above mean sea level (amsl). Within the site, the ridgeline comprising the site has a high point of about 510 feet amsl and an average elevation of approximately 480 feet amsl.

The Main Pit from the mining operations remains. When the mine was abandoned, the Main Pit flooded. The waste rock stockpiles previously surrounding the eastern and southeastern portions of the Main Pit were a source of acid rock drainage. The pit contains approximately 60 million gallons of water with an historical pH of 2 and a high dissolved metal content.

Field Investigation Activities

On July 24, 2009, START conducted surface water and monitoring well sampling. The investigation consisted of measuring water quality and collecting water samples from the lake, nearby creek, and two monitoring wells. A HASP was developed for the site prior to fieldwork activities.

START collected two samples from the lake, one sample from the creek, and two samples from the newly installed monitoring wells (Figure 1). Water quality parameters were measured at each sample location (Table 1). The lake water column was measured every meter from the surface to the bottom. BHR-MPS-014 was collected one meter below the lake water surface and BHR-MPB-014 was collected one meter from the bottom of the lake using a Bacon Bomb. BHR-S0-014 was collected adjacent to the spillway along the creek (Seep 0). Samples BHR-MW1-001 and BHR-MW2-001 were collected from monitoring wells 1 and 2, respectively, located just south of the lake. Lake samples were analyzed by Analytical Environmental Services, Inc. (AES) for various parameters including dissolved target analyte list (TAL) metals, total TAL metals, total organic carbon, pH, alkalinity, ferric/ferrous speciation, and total dissolved solids (TDS). The creek sample was analyzed for total metals only, and the monitoring wells were sampled for total metals, pH, ferric/ferrous speciation, TDS, ammonia, nitrate, sulfate, and total acidity. Aliquots sampled for dissolved TAL metals were filtered onsite using a 0.45 micron filter. Laboratory analytical reports are provided in Attachment C.

Conclusions

Tables 2, 3, and 4 are analytical comparisons of the lake surface, lake bottom, and creek respectively, from June 2008 through July 2009 of potentially applicable standards,

Surface Water Sampling Letter Report Barite Hills site Page 3 of 3

including priority and non-priority pollutants. Table 5 is the analytical comparison of the monitoring wells. Graph 1 illustrates the lake surface dissolved metal concentrations over time. Graph 2 is a close up of Graph 1, detailing the lower concentrations. Tables and graphs can be found in Attachment B.

If you have any questions or comments regarding this Letter Report or require any additional information, please contact me at (678) 355-5550 ext. 5707.

Sincerely,

Russell Henderson

Project Manager

Oneida Total Integrated Enterprises (OTIE)

Superfund Technical Assessment and Response Team (START)

Enclosures

Attachment A – Figures

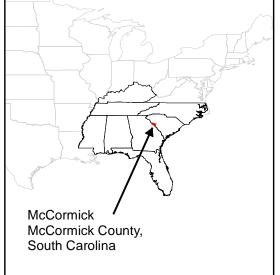
Attachment B – Tables & Graphs

Attachment C – Analytical Data

Attachment D - HASP

ATTACHMENT A FIGURES

Legend


Monitoring Well

Note:

MW - Monitoring Well
MPS - Mine Pit Surface
MPB - Mine Pit Bottom
BHR - Barite Hills Removal N

Feet 180

360

United States Environmental Protection Agency

BARITE HILLS MCCORMICK, MCCORMICK COUNTY, SOUTH CAROLINA TDD No: TNA-05-003-0049

FIGURE 1 JULY 2009 SAMPLE LOCATIONS

ATTACHMENT B TABLES & GRAPHS

Table 1 **Water Quality Parameters**

Nov. 19/21, 2008 YSI 5200 <u>Main Pit Lake</u>

Depth (m)	pН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	4.38	43.8	4.74	13.41	3.327
2	4.6	-74.5	0.9	14.83	3.607
3	4.73	-88.3	0.63	14.88	3.575
4	4.81	-94.2	0.6	14.87	3.559
5	4.76	-96.5	0.47	14.87	3.537
6	4.81	-99.4	0.43	14.87	3.534
7	4.82	-100.1	0.4	14.87	3.529
8	4.82	-102.8	0.38	14.81	3.527
9	4.72	-136.9	0.39	16.12	3.818
10	4.65	-154.9	0.3	16.71	4.009
11	4.8	-197	0.43	16.69	3.774
12	5.26	-196.8	0.4	16.66	3.684

Creeks

0.00.00					
Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1					
2	3.05	452	3.1	7.91	3.568
3 SE	6.54	232	4.17	9.24	0.429
3 SW					

Dec. 16, 2008 YSI 5200

Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	4.9	-42	1.5	11.59	3.258
2	4.95	-60	1.86	11.67	3.277
3	4.98	-64	2.39	11.66	3.278
4	5.02	-66	0.86	11.63	3.276
5	5.04	-70	0.71	11.62	3.276
6	5.07	-71	0.67	11.63	3.279
7	5.07	-71	0.63	11.64	3.28
8	5.08	-72	0.61	11.64	3.28
9	5.08	-72	0.6	11.63	3.28
10	5.1	-73	0.58	11.63	3.28
11	5.1	-73	0.57	11.63	3.28
12	5.1	-73	0.56	11.63	3.28
13	5.08	-94	0.54	11.66	3.285
14	5.8	-102	0.39	11.86	2.732
15	5.82	-113	0.41	11.85	2.721

Table 1 Water Quality Parameters

Feb. 7, 2009

Horbia U-22XD

Main Pit Lake

Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	5.27	-6	1.79	9.7	6.44
2	5.27	-8	1.27	9.3	7.12
3	5.26	-9	0.79	9	6.02
4	5.27	-8	0.76	9	5.82
5	5.27	-10	0.7	8.9	6.09
6	5.27	-8	0.67	8.9	8.09
7	5.27	-35	0.58	8.9	9.3
8	5.27	-40	0.54	8.9	6.64
9	5.27	-40	0.55	9	8.12
10	5.27	-40	0.54	9	9.49
11	5.27	-10	0.74	8.9	6.9
12	5.98	-146	0	10	3.88
13	6.08	-160	0	10	2.56
14	6.09	-165	0	10	2.26
15	6.1	-185	0	10.4	1.7

Jan. 30, 2009

Creeks

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	2.6			8.2	
2	2.68			8.4	
3 SE	5.17			9.3	
3 SW	3.65			10.2	

Feb. 26, 2009

Horbia U-22XD

Depth (m)	pН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	4.76	106	6.97	11.5	0.828
2	4.85	101	5.39	9.5	0.825
3	5.31	29	1.48	9.6	0.982
4	5.38	16	0.15	9.3	0.888
5	5.39	15	0	9.3	0.864
6	5.4	13	0	9.3	0.888
7	5.4	14	0	9.3	0.989
8	5.41	12	0	9.3	0.987
9	5.41	11	0	9.3	1.45
10	5.83	-59	0	9.5	1.24
11	5.93	-79	0	9.7	1.16
12	5.96	-91	0	9.7	1.08
13	5.98	-98	0	9.8	1.04
14	5.99	-105	0	9.8	1
15	6	-107	0	9.8	0.96
15.5	6.17	-192	0	10.1	0.555

Table 1 Water Quality Parameters

SE Corner of Lake

Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
1	4.9	97	6.63	10.5	0.452
2	4.9	106	5.79	9.5	0.436
3	5.38	32	2.52	9.6	0.595
4	5.45	24	0.29	9.3	0.712
5	5.45	22	0	9.3	0.698
6	5.45	19	0	9.3	0.725
7	5.46	16	0	9.3	0.73
8	5.45	15	0	9.3	0.728
9	5.45	16	0	9.3	0.717
10	5.8	-35	0	9.5	0.709
11	5.97	-69	0	9.7	0.69

SW Corner of Lake

SW Comer of Lake									
Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)				
1	4.88	105	6.92	10.4	0.425				
2	4.9	108	5.86	9.5	0.424				
3	5.43	35	2.14	9.4	0.518				
4	5.45	31	0.71	9.3	0.6				
5	5.46	29	0.26	9.3	0.616				
6	5.46	27	0	9.3	0.628				
7	5.47	26	0	9.3	0.655				
8	5.46	26	0	9.2	0.652				
9	5.85	-24	0	9.5	0.69				
10	5.9	-43	0	9.6	0.693				

Creeks

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)
0	3.96	305	10.82	12.2	83.3
MC	6.32	45	9.74	12.9	18.5
1	2.93	386	6.98	12.4	0.287
2	3.09	383	7.91	14.5	0.23
3	3.77	368	7.15	14	64.9

Apr. 08, 2009 Horbia U-22XD

Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
0.5	3.83	231	6.27	12.9	1.15	20.5
1	5.07	-43	5.02	12.8	1.14	19.5
2	5.17	-43	1.48	12.6	1.06	13.4
3	5.22	-43	0.00	10.7	1.1	8.9
4	5.24	-45	0.00	10.5	1.13	8.1
5	5.26	-48	0.00	10.4	1.15	9.0
6	5.26	-49	0.00	10.4	1.19	9.3
7	5.26	-49	0.00	10.3	1.25	11.3
8	5.27	-51	0.00	10.3	1.3	11.5
9	5.26	-51	0.00	10.3	1.33	14.5
10	5.27	-52	0.00	10.3	1.38	14.4
11	5.31	-57	0.00	10.3	1.48	47.4
12	5.31	-57	0.00	10.3	0.999	128
13	5.33	-60	0.00	10.3	0.889	offscale
14	5.37	-60	0.00	10.3	0.832	offscale
15	6.13	-182	0.00	10.4	0.777	offscale

Table 1 Water Quality Parameters

Creeks

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
0	4.33	207	11.63	11.4	0.181	50
1	4.73	179	11.43	11	33.7	42.9
2	3.36	317	10.26	12.2	0.135	17.7
3	4.14	296	9.35	11.8	50.3	22.2

May 15, 2009

Horbia U-22

Main Pit Lake

Depth (m)	pН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
1	3.14	259	3.98	23.9	0.357	33.0
2	5.05	-104	0.00	17.2	0.442	32.6
3	5.04	-92	0.00	12.6	0.447	25.3
4	5.03	-88	0.00	11.7	0.452	26.0
5	5.03	-86	0.00	11.4	0.437	27.6
6	5.05	-88	0.00	11.3	0.463	31.0
7	5.04	-85	0.00	11.3	0.469	32.4
8	5.05	-87	0.00	11.2	0.477	32.1
9	5.05	-86	0.00	11.2	0.485	33.8
10	5.06	-87	0.00	11.2	0.493	35.7
11	5.05	-88	0.00	11.2	0.502	35.6
12	5.08	-90	0.00	11.2	0.515	41.4
13	5.10	-93	0.00	11.2	0.535	75.7
14	5.18	-101	0.03	11.2	0.554	269
15	5.94	-195	0.22	11.3	0.588	offscale

Creeks

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
0	2.96	374	10.02	19.0	0.112	29.9
1	2.36	429	2.82	18.0	0.293	30.2
2	2.41	421	5.95	18.2	0.236	23.9
3	2.85	351	4.64	18.0	0.128	39.7

June 18, 2009

Horbia U-22

Depth (m)	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
Surface	3.24	282	7.36	30.0	3.27	offscale
0.25	3.24	280	7.20	30.0	3.27	offscale
0.50	3.23	275	6.98	30.0	3.28	offscale
0.75	3.26	257	6.01	29.9	3.28	15.5
1	5.18	-63	1.36	27.9	3.57	13.5
2	5.17	-82	1.68	17.9	3.80	14.9
3	5.19	-70	1.32	14.1	3.71	15.8
4	5.17	-54	1.42	13.2	3.73	12.3
5	5.17	-50	1.48	13.1	3.69	11.3
6	5.17	-48	1.50	12.9	3.68	13.4
7	5.17	-48	1.54	12.9	3.68	13.7
8	5.17	-47	1.61	12.9	3.67	12
9	5.18	-47	1.60	12.9	3.67	14.5
10	5.19	-47	1.60	12.8	3.67	13.5
11	5.21	-48	1.28	12.8	3.66	15.3
12	5.23	-50	0.00	12.8	3.65	19.6
13	5.65	-66	0.00	12.8	3.62	16.8
14	5.63	-176	0.00	12.9	3.00	offscale
15	5.58	-167	0.00	13.0	3.05	offscale

Table 1 Water Quality Parameters

Creeks

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
0	3.63	244	11.18	25.2	1.55	offscale
1	2.96	349	11.49	21.8	0.394	offscale
2	3.31	297	11.22	22.0	0.242	offscale
3	4.06	158	10.1	22.1	0.163	offscale

July 24, 2009

Horbia U-22

Main Pit Lake

Depth (m)	pН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
Surface	8.72	-156	2.7	29.1	3.9	1.9
0.50	8.67	-166	2.55	28.2	3.89	2.3
1	8.59	-180	2.51	27.9	3.9	1.0
2	8.35	-198	2.19	27.7	3.88	1.8
3	8.03	-248	1.13	27.5	3.9	2.2
4	6.15	-171	0.00	15.7	3.93	652.0
5	6.16	-170	0.00	14.2	3.93	653.0
6	6.15	-170	0.00	14.2	3.93	652.0
7	6.16	-170	0.00	14.2	3.93	650
8	6.16	-171	0.00	14.2	3.93	671
9	6.17	-172	0.00	14.2	3.93	638
10	6.17	-172	0.00	14.2	3.93	654
11	6.18	-173	0.00	14.2	3.93	634
12	6.18	-174	0.00	14.1	3.93	626
13	6.18	-174	0.00	14.1	3.94	594
14	6.17	-173	0.00	14	3.97	591
15	6.21	-171	0.00	13.8	4.04	offscale

Creeks

	Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
1	0	3.03	419	3.46	25.8	2.67	0.3

Monitoring Wells

Location	рН	ORP (mV)	DO (mg/L)	Temp (°C)	Conductivity (mS/cm)	Turbidity (NTU)
MW-1	2.86	280	2.06	20.9	10.6	0
MW-2	3.81	205	1.58	20.1	11.4	0

Table 2 Pit Lake Surface Potentially Applicable Standards Comparison

	Human Health	SCDHEC WQC	under R61-68	Oct. 2007	May 2, 2008	Jun. 10, 2008	Jul. 30, 2008	Aug. 22, 2008	Nov. 6, 2008
	MCL	CMC	CCC	BHB-005	BHT-001	BHR-5-001	BRR-JR-LAKE		BHR-MP05-110608
		•		Pit Water	Pit water treated				
Potentially Applic	able Standards (pri	ority pollutants)		Untreated (mg/L)	(Total, mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)
Antimony	0.006	NSA	NSA	0.02	NA	0.006	0.2	0.2	BRL*
Arsenic	0.01	0.34	0.15	0.968	NA	BRL†	BRL†	BRL†	BRL†
Cadmium	0.005	0.008	0.0026	1.57	NA	BRL#	BRL#	BRL#	BRL#
Chromium	0.1	0.57	0.074	0.141	NA	BRL†	BRL†	BRL†	BRL†
Copper	1	0.057	0.039	287	NA	BRL†	BRL†	BRL†	BRL†
Lead	0.015	0.32	0.005	0.161	NA	BRL†	BRL†	BRL†	0.0381
Nickel	0.61	1.071	0.167	0.404	NA	0.163	BRL*	BRL*	BRL*
Selenium	0.05	NSA	0.005	0.23	NA	0.022	0.028	0.01	BRL*
Zinc	5	0.339	0.339	40.2	NA	1.44	BRL*	BRL*	0.132
Potentially Applic	able Standards (noi	n-priority pollutants)							
Aluminum	0.2	0.75	0.087	224	NA	0.347	BRL§	BRL§	0.342
Iron	0.3		1	1150	121	309	322	287	148
Manganese	0.05-0.1			13.6	NA	10.6	11	11.7	8.96
Ferrous Iron (mg/	L)								
Iron, Ferric (+3)	0.3	NSA	1	NA	BRL⁰	NA	NA	NA	BRL⁰
Iron, Ferrous (+2)	0.3	NSA	1	NA	145	NA	NA	NA	217

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

NSA - Standard not availabe

BRL - Below reporting limit

* - Reporting limit 0.02

† - Reporting limit 0.01

‡ - Reporting limit 0.05

- Reporting limit 0.005

§ - Reporting limit 0.2

o - Reporting limit 0.1

Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC)

Table 2
Pit Lake Surface Potentially Applicable Standards Comparison

	Human Health	SCDHEC WQC	under R61-68	Nov. 19, 2008	Dec. 16, 2008	Jan. 30, 2009	Feb. 26, 2009	Apr. 08, 2009	May 15, 2009
	MCL	CMC	CCC	BHR-MPS-001	BHR-MPS-006	BHR-MPS-006	BHR-MPS-010	BHR-MPS-011	BHR-MPS-012
		•		Pit water treated					
Potentially Applic	able Standards (pri	ority pollutants)		(Dissolved, mg/L)					
Antimony	0.006	NSA	NSA	0.257	BRL*	BRL*	BRL*	0.0045	0.0039
Arsenic	0.01	0.34	0.15	BRL‡	BRL‡	BRL‡	BRL‡	BRL‡	BRL‡
Cadmium	0.005	0.008	0.0026	BRL#	BRL#	BRL#	BRL#	BRL#	BRL#
Chromium	0.1	0.57	0.074	BRL†	BRL†	BRL†	BRL†	0.0013	0.0015
Copper	1	0.057	0.039	BRL†	0.0278	0.0293	BRL†	0.0572	0.138
Lead	0.015	0.32	0.005	0.0353	BRL†	BRL†	0.0427	BRL†	0.0024
Nickel	0.61	1.071	0.167	BRL*	BRL*	BRL*	BRL*	0.005	0.0033
Selenium	0.05	NSA	0.005	BRL*	BRL*	BRL*	BRL*	BRL*	BRL*
Zinc	5	0.339	0.339	0.118	0.061	0.0628	0.0685	0.0748	0.106
Potentially Applic	able Standards (no	n-priority pollutants)							
Aluminum	0.2	0.75	0.087	0.257	0.314	BRL§	BRL§	0.177	0.459
Iron	0.3		1	169	212	165	186	151	77.8
Manganese	0.05-0.1			9.33	11.2	10.2	10.7	10.8	10.3
Ferrous Iron (mg/	L)								
Iron, Ferric (+3)	0.3	NSA	1	37.2	BRL⁰	BRL⁰	28.5	55.7	2.05
Iron, Ferrous (+2)	0.3	NSA	1	191	305	209	194	103	75.7

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

NSA - Standard not availabe

BRL - Below reporting limit

* - Reporting limit 0.02

† - Reporting limit 0.01

‡ - Reporting limit 0.05

- Reporting limit 0.005

§ - Reporting limit 0.2

o - Reporting limit 0.1

I CIIOW

Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC)

Table 2 Pit Lake Surface Potentially Applicable Standards Comparison

	Human Health	SCDHEC WQC	under R61-68	June 18, 2009	July 24, 2009
	MCL	CMC	CCC	BHR-MPS-013	BHR-MPS-014
•	•			Pit water treated	Pit water treated
Potentially Applic	able Standards (pric	ority pollutants)		(Dissolved, mg/L)	(Dissolved, mg/L)
Antimony	0.006	NSA	NSA	0.0051	
Arsenic	0.01	0.34	0.15	BRL‡	
Cadmium	0.005	0.008	0.0026	BRL#	
Chromium	0.1	0.57	0.074	BRL†	
Copper	1	0.057	0.039	0.145	BRL†
Lead	0.015	0.32	0.005	0.0049	
Nickel	0.61	1.071	0.167	0.0026	
Selenium	0.05	NSA	0.005	BRL*	BRL*
Zinc	5	0.339	0.339	0.117	BRL*
Potentially Applic	able Standards (nor	n-priority pollutants)			
Aluminum	0.2	0.75	0.087	0.622	
Iron	0.3		1	64.8	BRL⁰
Manganese	0.05-0.1			9.27	3.48
Ferrous Iron (mg/	L)				
Iron, Ferric (+3)	0.3	NSA	1	102	0.475
Iron, Ferrous (+2)	0.3	NSA	1	68.2	BRL⁰

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

NSA - Standard not availabe

BRL - Below reporting limit

* - Reporting limit 0.02

† - Reporting limit 0.01

‡ - Reporting limit 0.05

- Reporting limit 0.005

§ - Reporting limit 0.2

o - Reporting limit 0.1

Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC)

Table 3 Pit Lake Bottom Potentially Applicable Standards Comparison

	Human Health	SCDHEC WQC	under R61-68	Oct. 2007	Dec. 16, 2008	Feb. 26, 2009	Apr. 08, 2009
	MCL	CMC	CCC	BHB-005	BHR-MPSB-008	BHR-MPB-010	BHR-MPB-011
				Pit Water	Pit water treated	Pit water treated	Pit water treated
Potentially Applic	cable Standards (pri	ority pollutants)		Untreated (mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)
Antimony	0.006	NSA	NSA	0.02	BRL*	BRL*	BRL*
Arsenic	0.01	0.34	0.15	0.968	BRL‡	BRL‡	BRL‡
Cadmium	0.005	0.008	0.0026	1.57	BRL#	BRL#	BRL#
Chromium	0.1	0.57	0.074	0.141	BRL†	BRL†	0.0019
Copper	1	0.057	0.039	287	0.0189	0.0284	0.0052
Lead	0.015	0.32	0.005	0.161	BRL†	0.036	BRL†
Nickel	0.61	1.071	0.167	0.404	BRL*	BRL*	0.0067
Selenium	0.05	NSA	0.005	0.23	BRL*	BRL*	BRL*
Zinc	5	0.339	0.339	40.2	0.0676	0.0601	0.112
Potentially Applic	cable Standards (noi	n-priority pollutants)					
Aluminum	0.2	0.75	0.087	224	0.38	BRL§	0.193
Iron	0.3		1	1150	217	178	187
Manganese	0.05-0.1			13.6	11.4	10.6	11.1
Ferrous Iron (mg	/L)						
Iron, Ferric	0.3	NSA	1		BRL⁰	0.52	5.83
Iron, Ferrous	0.3	NSA	1		285	186	188

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

NSA - Standard not availabe

BRL - Below reporting limit

* - Reporting limit 0.02

† - Reporting limit 0.01

‡ - Reporting limit 0.05

- Reporting limit 0.005

§ - Reporting limit 0.2

o - Reporting limit 0.1

Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC) Red - Exceeds all criteria (both Human Health Standard and SCDHEC WQC)

Table 3
Pit Lake Bottom Potentially Applicable Standards Comparison

	Human Health	SCDHEC WQC	under R61-68	May 15, 2009	June 18, 2009	July 24, 2009
	MCL	CMC	CCC	BHR-MPB-012	BHR-MPB-013	BHR-MPB-014
				Pit water treated	Pit water treated	Pit water treated
Potentially Appli	cable Standards (pri	ority pollutants)		(Dissolved, mg/L)	(Dissolved, mg/L)	(Dissolved, mg/L)
Antimony	0.006	NSA	NSA	0.0082	0.0056	
Arsenic	0.01	0.34	0.15	BRL‡	BRL‡	
Cadmium	0.005	0.008	0.0026	BRL#	BRL#	
Chromium	0.1	0.57	0.074	0.0015	BRL†	
Copper	1	0.057	0.039	BRL†	BRL†	BRL†
Lead	0.015	0.32	0.005	BRL†	0.0058	
Nickel	0.61	1.071	0.167	0.0059	0.0065	
Selenium	0.05	NSA	0.005	0.0106	0.01	BRL*
Zinc	5	0.339	0.339	0.127	0.055	BRL*
Potentially Appli	cable Standards (noi	n-priority pollutants)				
Aluminum	0.2	0.75	0.087	0.06	0.156	
Iron	0.3		1	149	157	74.4
Manganese	0.05-0.1			11.4	9.79	10.6
Ferrous Iron (mg	/L)					
Iron, Ferric	0.3	NSA	1	BRL⁰	BRL⁰	48.1
Iron, Ferrous	0.3	NSA	1	163	173	101

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

NSA - Standard not availabe

BRL - Below reporting limit

* - Reporting limit 0.02

† - Reporting limit 0.01

reporting in the old

‡ - Reporting limit 0.05

- Reporting limit 0.005

§ - Reporting limit 0.2

o - Reporting limit 0.1

Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC)

Table 4
Creek Potentially Applicable Standards Comparison (Total)

Seep 0	Human Health	SCDHEC WQC	C under R61-68	July 24, 2009
	MCL	CMC	CCC	BHR-S0-014
Potentially Applic	able Standards (p	riority pollutants	s)	
Antimony	0.006	NSA	NSA	
Arsenic	0.01	0.34	0.15	
Cadmium	0.005	0.008	0.0026	
Chromium	0.1	0.57	0.074	
Copper	1	0.057	0.039	20.2
Lead	0.015	0.32	0.005	
Nickel	0.61	1.071	0.167	
Selenium	0.05	NSA	0.005	0.053
Zinc	5	0.339	0.339	11.4
Potentially Applic	able Standards (n	on-priority pollu	itants)	
Aluminum	0.2	0.75	0.087	
Iron	0.3	NSA	1	93
Manganese	0.05-0.1	NSA	NSA	13.8
Potassium	NSA	NSA	NSA	11.6
Sodium	NSA	NSA	NSA	44.3

SCDHEC - South Carolina Department of Health and Environmental Control

a - South Carolina Regulation 61-68, Water Classifications and Standards, adopted June 2004 and adjusted for water hardness of 400 mg/L.

MCL - Maximum contaminent level

CMC - Criterion maximum concentration

CCC - Criterion continuous concentration

mg/L - Milligrams per liter

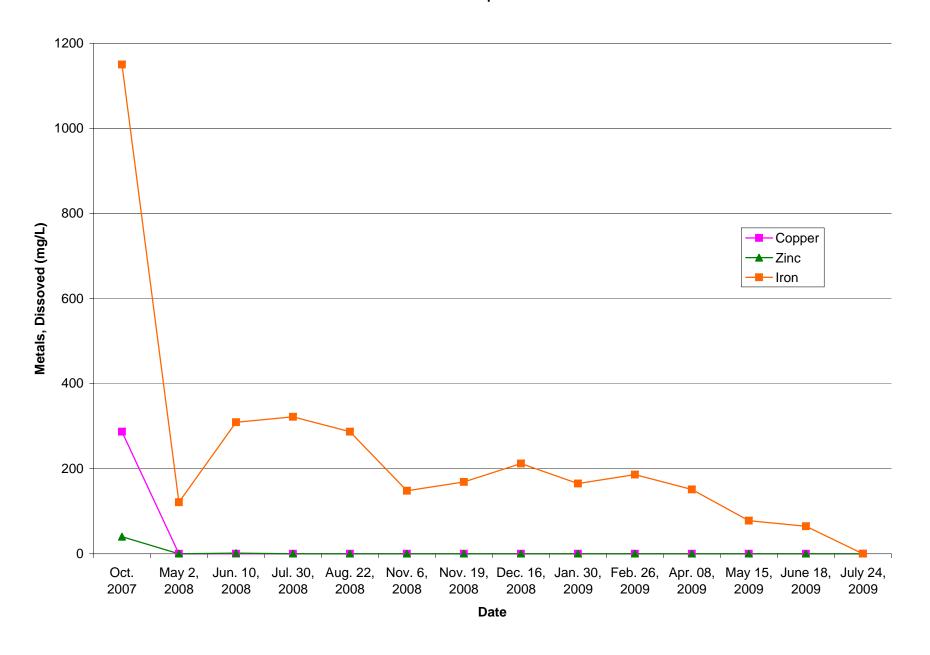
NSA - Standard not availabe

NA - Not analyzed

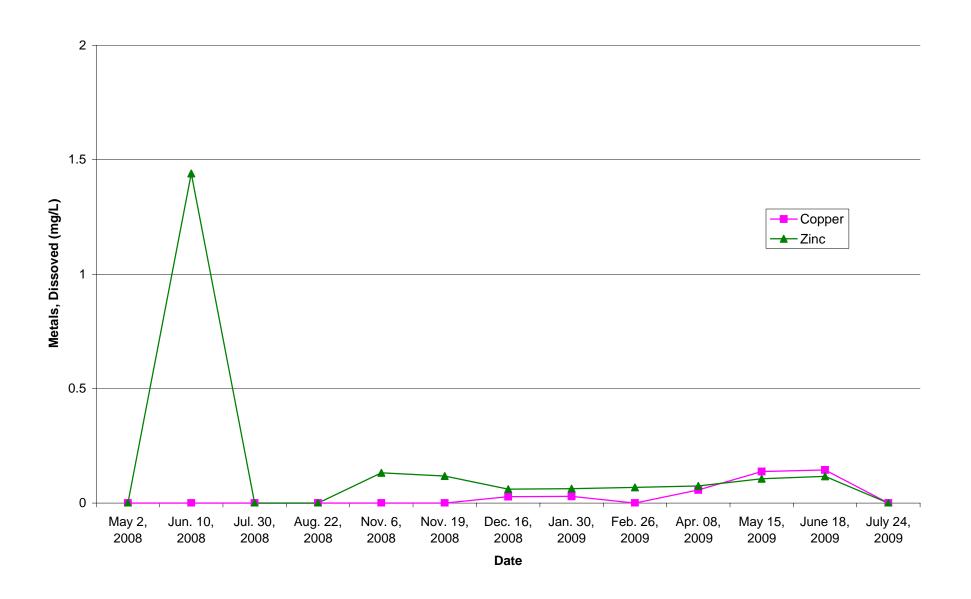
Yellow - Exceeds one criteria (Human Health Standard or SCDHEC WQC)

Table 5 Monitoring Wells Potentially Applicable Standards Comparison

Drinking Water	National Reco	mmended WQC	SCDH	EC WQC ^a	MV	V-01	MW	/-02
Federal MCL	NOAEL Acute	NOAEL Chronic	NOAEL Acute	NOAEL Chronic	July 2	4, 2009	July 2	4, 2009
	•	•		-				
500					15,000	100	16,000	100
250	860	NSA	NSA	230				
10	NSA	NSA	NSA	NSA	BRL	2.5	BRL	2.5
250	NSA	NSA	NSA	NSA	14,800	1000	10,800	1000
NSA	NSA	NSA	NSA	NSA	8210	10	7,200	10
					5.81	0.2	4.74	0.2
NSA	NSA	NSA	NSA	NSA				
6.5-8.5	NSA	6.5 - 8.5	NSA	6.5 - 9.0	3.03	0.01	3.40	0.01
	-			-			-	
1	0.013	0.009	0.0038	0.0029			174	0.1
0.3	NSA	1	NSA	1	2820	10	3020	10
0.05	NSA	NSA	NSA	NSA	12.1	0.015	14.9	0.015
NSA	NSA	NSA	NSA	NSA	47.5	0.5	24.3	0.5
0.05	NSA	0.005	NSA	0.005	0.0355	0.02		
NSA	NSA	NSA	NSA	NSA	34.5	1	605	100
5	0.12	0.12	0.037	0.037	57.6	0.2	48.2	0.2
0.3	NSA	1	NSA	1	67.6	0.1	BRL	0.1
0.3	NSA	1	NSA	1	2760	500	3140	500
	Solution	Solution	NOAEL Acute NOAEL Chronic	NOAEL Acute NOAEL Chronic NOAEL Acute	NOAEL Acute NOAEL Chronic NOAEL Acute NOAEL Chronic	NOAEL Acute NOAEL Chronic NOAEL Acute NOAEL Chronic July 2	Federal MCL NOAEL Acute NOAEL Acute NOAEL Chronic July 24, 2009 500	Federal MCL NOAEL Acute NOAEL Chronic NOAEL Chronic July 24, 2009 July 24 500 15,000 100 16,000 250 860 NSA NSA NSA BRL 2.5 BRL 2.5


a - South Carolina Regulation 61-68, Water Classifications and Standards

NSA - Standard not availabe mg/L - Milligrams per liter BRL - Below Reporting Limit


Yellow - Exceeds one criteria (Federal Drinking Water Standard or SCDHEC WQC)

Red - Exceeds all criteria (both Federal Drinking Water Standard and SCDHEC WQC)

Graph 1
Pit Lake Comparison

Graph 2
Pit Lake Comparison Detailed
(Iron is not included since it is detailed on Graph 1)

ATTACHMENT C ANALYTICAL DATA

ANALYTICAL ENVIRONMENTAL SERVICES, INC.

August 03, 2009

Russell Henderson Oneida Total Integrated Enterprises 1220 Kennestone Circle Suite D Marietta, GA 30066

TEL: (678) 355-5550 FAX: (414) 257-2492

RE: Barite Hills Removal

Dear Russell Henderson:

Order No.: 0907I70

Analytical Environmental Services, Inc. received 6 samples on 7/27/2009 2:20:00 PM for the analyses presented in the following report.

No problems were encountered during the analyses. Additionally, all results for the associated Quality Control samples were within EPA and/or AES established limits. Any discrepancies associated with the analyses contained herein will be noted and submitted in the form of a project Case Narrative.

AES' certifications are as follows:

-NELAC/Florida Certification number E87582 for analysis of Environmental Water, soil/hazardous waste, and Drinking Water Microbiology, effective 07/01/09-06/30/10.

-AIHA Certification ID #100671 for Industrial Hygiene samples (Organics, Inorganics), Environmental Lead (Paint, Soil, Dust Wipes, Air), and Environmental Microbiology (Fungal) effective until 09/01/09.

These results relate only to the items tested. This report may only be reproduced in full and contains 24 total pages (including cover letter).

If you have any questions regarding these test results, please feel free to call.

James Forres

Project Manager

a Trest

07 IL 063

		, ,	×	111								1	/								
		•				H 7)-\ -)F-	CL	LS	IO.	X	RE	$C_{\mathcal{C}}$	CHAIN-OF-CUSTODY RECORD				1 COC NUMBER:	
PROJECT NAME:	NAME	PROJECT NUMBER:	LAB.	'LAB NAME AND CONTACT;	NTACT:			FAX	AND M.	11 FAX AND MAIL REPORTS/EDD TO:: RECIPIENT 1 (Name and Commun)	RTS/EDI	ar a			1	RECIPIENT	1 (Address,	"RECIPIENT 1 (Address, Tel No., and Fax No.):	_		
Bari	Barite Hills Removal	1116	AES	AES James Forrest	est																
PROJECT	PROJECT PHASE/SITE/TASK:	CTO OR DO NUMBER:	, Z.	LAB PO NUMBER:				FAX	AND MA	12 FAX AND MAIL REPORTS/EDD TO:: RECIPIENT 2 (Name and Company)	RTS/EDI	år.			122	RECIPIENT	2 (Address,	PECIPIENT 2 (Address, Tel No., and Fax No.):			
2005148-1116	-1116																				
* PROJECT	PROJECT CONTACT:	PROJECT TEL NO AND FAX NO:	ž.	"LAB TEL NO AND FAX NO:	AX NO:			13 FAX	AND M	13 FAX AND MAIL REPORTS/EDD TO:	RTS/EDI) TO:			Ĭ	RECIPIENT	3 (Address,	RECIPIENT 3 (Address, Tel No., and Fax No.);	ļ <u>.</u>		
Russell	Russell Henderson	Manual III		7.	770-457-8177																
	***************************************				7777			L			ANALY	SES RE	QUIRED.	24 ANALYSES REQUIRED (Include Method Numbers)	Acthod Nu	mbers)					
'' ITEM	" SAMPLE IDENTIFIER	* SAMPLE DESCRIPTION/LOCATION	XIRIAM ^{og} (4O2 no eebee eee)	" DATE	COLLECTED	DATA PKG LEVEL (500 COdes on SOP)	24 TAT (calendar days)	abbik JAT	elntol/. bovioeei@	100	Иq	Bicarbonate	Ferricherrons Speciation	201	Ammonis, Sitrate, Sultate	Tilbish faloT		SAMPLE TYPE (see codes on SOP)		" COMMENTS/ SCREENING READINGS	™ LAB ID (for lab's use)
	BHR-MPS-014	Main Pit Surface		07/24/09	11:15	Ħ	5 Day	×	×	×	×	×	×	×		A			For N Coy Iron sodii	For Metals on totals run Copper, Manganese, Iron, Selenium, Zinc, sodium and potassium only	
8	BHR-MPB-014	Main Pit Bottom		07/24/09	11:30	Ħ	5 Day	×	×	X	×	×	×	×					Disc.	Disolved run Copper, Manganese, Iron, Selenium, Zinc only	
3	BHR-S0-014	Seep 0		07/24/09	12:40	п	5 Day	×			1	<u> </u>		(M)							
4	BHR-MW1-001	Monitor well 1 uphill	1	07/24/09	13:00	п	5 Day	×			×		X	х	×	×					
٠,	BHR-MW2-001	Monitor well 2 downhill	ı	07/24/09	13:10	п	5 Day	×			×		×	×	×	×					
9																					
10																					
2 SAMPLE	SAMPLER(S) AND COMPANY: (please print)	case print)	000	"COURIER AND SHIPPING NUMBI	PPING NUMBER	ارا		$\ \ $						\$ 15 15	AMPLES	TEMPERAT	UREANDO	¹⁾ SAMPLES TEMPERATURE AND CONDITION UPON RECEIPT (for lab's use)	ECEIPT (for	lab's use):	
													1								
Printed Nam	rect Name and Signature	* RELINQUISHED BY		DATE	9	+	TIME	Printed	Name	Printed Name and Bignature:			X	RECEN	RECEIVED BY					DATE	TIME
8	Mellen Signature		[P]	1240		13.	19:00					M			M	23/6	0	2:20		1/0/1900	00:0
					***************************************					1	,						1	Lean y			
Printed Nam	rinted Name and Signature:							Printed	Name	Printed Name and Signature	ų										
		Distribution	년 -	Distribution: [Original - Laboratory (To be retu	- 2	ned with Analytical Report); [ytical Rep		Copy 1	Capy 1 - Project File; Capy 2 - PMO	गुद ी]	Copy 2	PMO						4		

Sample/Cooler Receipt Checklist

Client $07/E$		Work Order Number	0907170
Pn -	7 07	***************************************	
Checklist completed by Signature Date	7-27	-09	,
Carrier name: FedEx UPS Courier Client US	S Mail Other	<u>"</u>	
Shipping container/cooler in good condition?	Yes _	No Not Present	
Custody seals intact on shipping container/cooler?	Yes	No Not Present	- <u> </u>
Custody seals intact on sample bottles?	Yes	No Not Present	-
Container/Temp Blank temperature in compliance? (4°C±2)*		No	
Cooler #1 3 - 6 * Cooler #2 Cooler #3	Cooler #4	Cooler#5	Cooler #6
Chain of custody present?	Yes _	No	
Chain of custody signed when relinquished and received?	Yes _	No	
Chain of custody agrees with sample labels?	Yes	No _	
Samples in proper container/bottle?	Yes _	No	
Sample containers intact?	Yes	No	
Sufficient sample volume for indicated test?	Yes 🔽	No	
All samples received within holding time?	Yes	No _	
Was TAT marked on the COC?	Yes _	No	1
Proceed with Standard TAT as per project history?	Yes	No Not Applica	ble
Water - VOA vials have zero headspace? No VOA vials su	ıbmitted _	Yes No	
Water - pH acceptable upon receipt?	Yes	No Not Applica	ble
Adjusted?	Chec	cked by	_
Sample Condition: Good Other(Explain)			
(For diffusive samples or AIHA lead) Is a known blank include	led? Yes	No U	

See Case Narrative for resolution of the Non-Conformance.

\L\Quality Assurance\Checklists Procedures Sign-Off Templates\Checklists\Sample Receipt Checklists\Sample_Cooler_Receipt_Checklist

^{*} Samples do not have to comply with the given range for certain parameters.

Date: 04-Aug-09

CLIENT: Oneida Total Integrated Enterprises

Client Sample ID: BHR-MPS-014

Project: Barite Hills Removal

Collection Date: 7/24/2009 11:15:00 AM

Lab ID: 0907170-001 Matrix: AQUEOUS

Lab ID: 090/170-001				Matrix: AQUEOUS	S
Analyses	Result	Reporting Limit	Qual Unit	s BatchID Dilution Factor	
T. ORGANIC CARBON(TOC)(E415.1/SM5: Organic Carbon, Total	310B) 40.6	1.0	mg/L	1	Analyst: GAR 7/27/2009 4:48 PM
CARBON DIOXIDE SM4500-CO2 Bicarbonate Alkalinity	158	3.00	mg/L	1	Analyst: TL 7/30/2009 12:00 AM
METALS, TOTAL SW6010C				(SW3010A)	Analyst: BB
Copper	BRL	0.0100	mg/L	116162 1	7/29/2009 1:03 PM
fron	0.497	0.100	mg/L	116162 1	7/29/2009 1:03 PM
Manganese	4.32	0.0150	mg/L	116162 1	7/29/2009 1:03 PM
Potassium	57.8	0.500	mg/L	116162 1	7/29/2009 1:03 PM
Selenium	BRL	0.0200	mg/L	116162 1	7/29/2009 1:03 PM
Sodium	253	10.0	mg/L	116162 10	7/29/2009 1:45 PM
Zinc	BRL	0.0200	mg/L	116162 1	7/29/2009 1:03 PM
METALS, DISSOLVED SW6010C				(SAMP_FILT)	Analyst: BB
Copper	BRL	0.0100	mg/l.	116173 1	7/29/2009 10:55 AM
Iron	BRL	0.100	mg/L	116173 1	7/29/2009 10:55 AM
Manganese	3.48	0.0150	mg/L	116173 1	7/29/2009 10:55 AM
Selenium	BRL	0.0200	mg/L	116173 1	7/29/2009 10:55 AM
Zinc	BRL	0.0200	mg/L	116173 1	7/29/2009 10:55 AM
HYDROGEN ION (PH)(E150.1/SM4500 H+	-	0.04		u. d	Analyst: CG
рН	8.44	0.01	H pH Un	its 1	7/27/2009 6:46 PM
RESIDUE, DISS.(TDS)(E160.1/SM2540C) Residue, Dissolved (TDS)	3330	20	mg/L	(E160.1) 116361 1	Analyst: ML 7/30/2009 2:00 PM
FERROUS IRON SM3500-FE-D Iron, as Ferrous (Fe+2)	0.475 BRL	0.100 0.100	H mg/L H mg/L	1 1	Analyst: CG 7/27/2009 6:30 PM 7/27/2009 6:30 PM

Value exceeds Maximum Contaminant Level

BRL Below Reporting Limit

N Analyte not NELAC certified

B Analyte detected in the associated Method Blank

> Greater than Result value

Narr See Case Narrative NC Not Confirmed

< Less than Result value

H Holding times for preparation or analysis exceeded

E Estimated (Value above quantitation range)

S Spike Recovery outside limits due to matrix

Date: 04-Aug-09

Client Sample ID: BHR-MPB-014 CLIENT: Oneida Total Integrated Enterprises

Collection Date: 7/24/2009 11:30:00 AM Project: Barite Hills Removal

			. f	Matrix: A(QUEOUS	
Result	Reporting Limit	Qual	l Units	BatchID	Dilution Factor	Date Analyzed
310B)						Analyst: GAR
57.8	1.0		mg/L		1	7/27/2009 5:01 PM
						Analyst: TL
122	3.00		mg/L		1	7/30/2009 12:00 AM
			(SV	V3010A)		Analyst: BB
BRL	0.0100		mg/L	116162	1	7/29/2009 1:07 PM
149	1.00		mg/L	116162	10	7/29/2009 1:48 PM
10.5	0.0150		mg/L	116162	1	7/29/2009 1:07 PM
56.9	0.500		mg/L	116162	1	7/29/2009 1:07 PM
BRL	0.0200		mg/L	116162	1	7/29/2009 1:07 PM
153	10.0		mg/L	116162	10	7/29/2009 1:48 PM
0.0244	0.0200		mg/L	116162	1	7/29/2009 1:07 PM
			(SA	MP_FILT)		Analyst: BB
BRL	0.0100		mg/L	116173	1	7/29/2009 11:05 AM
74.4	0.200		mg/L	116173	2	7/29/2009 12:08 PM
10.6	0.0150		mg/L	116173	1	7/29/2009 11:05 AM
BRL	0.0200		mg/L	116173	1	7/29/2009 11:05 AM
BRL	0.0200		mg/L	116173	1	7/29/2009 11:05 AM
· B)						Analyst: CG
5.09	0.01	Н	pH Units		1	7/27/2009 6:50 PM
			(E1	60.1)		Analyst: ML
3650	20		mg/L	116361	1	7/30/2009 2:00 PM
						Analyst: CG
48.1	0.100	Н	mg/L		1	7/27/2009 6:30 PM
101	10.0	Н	mg/L		100	7/27/2009 6:30 PM
	57.8 57.8 122 BRL 149 10.5 56.9 BRL 153 0.0244 BRL 74.4 10.6 BRL BRL 5.09	BRL 0.0100 153 10.0 BRL 0.0150 56.9 0.500 BRL 0.0200 153 10.0 0.0244 0.0200 BRL 0.0200 154 0.0200 BRL 0.0200 155 10.0 0.0244 0.0200 BRL 0.0150 BRL 0.0200 10.6 0.0150 BRL 0.0200	BRL 0.0100 153 10.0 BRL 0.0100 149 1.00 10.5 0.0150 56.9 0.500 BRL 0.0200 153 10.0 0.0244 0.0200 BRL 0.0100 74.4 0.200 10.6 0.0150 BRL 0.0200	Result Limit Reporting Limit Qual Units 3310B) 57.8 1.0 mg/L 122 3.00 mg/L (SV BRL 0.0100 mg/L mg/L 149 1.00 mg/L mg/L 10.5 0.0150 mg/L mg/L 56.9 0.500 mg/L mg/L 153 10.0 mg/L mg/L 0.0244 0.0200 mg/L mg/L 74.4 0.200 mg/L mg/L BRL 0.0150 mg/L mg/L BRL 0.0200 mg/L mg/L BRL 0.0200 mg/L mg/L BRL 0.0200 mg/L mg/L BRL 0.0200 mg/L mg/L BB 5.09 0.01 H pH Units 48.1 0.100 H mg/L	Result Reporting Qual Units BatchID	Same

Qualifiers:	*	Value exceeds Maximum Contaminant Level
-------------	---	---

BRL Below Reporting Limit

Narr See Case Narrative NC Not Confirmed

Н Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

Analyte detected in the associated Method Blank

Greater than Result value

E Estimated (Value above quantitation range)

S Spike Recovery outside limits due to matrix

CLIENT:

Oneida Total Integrated Enterprises Client Sample ID: BHR-SO-014

Project: Barite Hills Removal Collection Date: 7/24/2009 12:40:00 PM

Lab ID: 0907170-003 Matrix: AQUEOUS

Analyses		Result	Reporting	Oual Units	BatchID	Dilution	Date Analyzed
			Limit	- C		Factor	
METALS, TOTAL	SW6010C	•			(SW3010A)		Analyst: BB
Copper		20.2	0.0100	mg/L	116162	1	7/29/2009 1:13 PM
Iron		93.0	0.500	mg/L	116162	5	7/29/2009 1:52 PM
Manganese		13.8	0.0150	mg/L	116162	1	7/29/2009 1:13 PM
Potassium		11.6	0.500	mg/L	116162	1	7/29/2009 1:13 PM
Selenium		0.0530	0.0200	mg/L	116162	1	7/29/2009 1:13 PM
Sodium		44.3	1.00	mg/L	116162	1	7/29/2009 1:13 PM
Zinc		11.4	0.0200	mg/L	116162	1	7/29/2009 1:13 PM

Qualifiers:

Value exceeds Maximum Contaminant Level

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated Method Blank

> Greater than Result value

E Estimated (Value above quantitation range)

Date: 04-Aug-09

S Spike Recovery outside limits due to matrix

Narr See Case Narrative

NC Not Confirmed

< Less than Result value

Date: 04-Aug-09

CLIENT:

Oneida Total Integrated Enterprises

Client Sample ID: BHR-MW1-001

Project:

Barite Hills Removal

Collection Date: 7/24/2009 1:00:00 PM

Lab ID:

0907170-004

Matrix: AQUEOUS

Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed
INORGANIC ANIONS BY IC E300.0							Analyst: GAR
Nitrogen, Nitrate (As N)	BRL	2.50	Н	mg/L		10	7/27/2009 5:15 PM
Sulfate	14800	1000		mg/L		1000	7/28/2009 9:33 AM
NITROGEN, AMMONIA (AS N) E350.1				(E350.1)		Analyst: LAV
Nitrogen, Ammonia (As N)	5.81	0.200		mg/L	116242	1	7/29/2009 5:01 PM
METALS, TOTAL SW6010C				(SW3010A)		Analyst: BB
Copper	257	0.100		mg/L	116162	10	7/29/2009 1:58 PM
Iron	2820	10.0		mg/L	116162	100	7/29/2009 5:58 PM
Manganese	12.1	0.0150		mg/L	116162	1	7/29/2009 1:23 PM
Potassium	47.5	0.500		mg/L	116162	1	7/29/2009 1:23 PM
Selenium	0.0355	0.0200		mg/L	116162	1	7/29/2009 1:23 PM
Sodium	34.5	1.00		mg/L	116162	1	7/29/2009 1:23 PM
Zinc	57.6	0.200		mg/L	116162	10	7/29/2009 1:58 PM
HYDROGEN ION (PH)(E150.1/SM4500 H+	B)						Analyst: CG
рН	3.03	0.01	Н	pH Units		1	7/27/2009 6:55 PM
RESIDUE, DISS.(TDS)(E160.1/SM2540C)			-	(1	E160.1)		Analyst: ML
Residue, Dissolved (TDS)	15000	100		mg/L	116361	1	7/30/2009 2:00 PM
ACIDITY (E305.1/SM2310 B)							Analyst: MAS
Acidity	8210	10.0		mg/L		1	7/30/2009 12:30 PM
FERROUS IRON SM3500-FE-D							Analyst: CG
Iron, as Ferric (Fe+3)	67.6	0.100	H	mg/L		1	7/27/2009 6:30 PM
Iron, as Ferrous (Fe+2)	2760	500	H	mg/L		5000	7/27/2009 6:30 PM

Qua	lifiers	;
-----	---------	---

- Value exceeds Maximum Contaminant Level
- BRL Below Reporting Limit
- H Holding times for preparation or analysis exceeded
- N Analyte not NELAC certified
- B Analyte detected in the associated Method Blank
- > Greater than Result value

- E Estimated (Value above quantitation range)
- S Spike Recovery outside limits due to matrix
- Narr See Case Narrative
- NC Not Confirmed
 - Less than Result value

CLIENT:

Oneida Total Integrated Enterprises Client Sample ID: BHR-MW2-001

Date: 04-Aug-09

Project: Barite Hills Removal Collection Date: 7/24/2009 1:10:00 PM

Lab ID: 0907170-005 Matrix: AQUEOUS

Lab ID: 090/1/0-003					Matrix: AQ	SOFOO2	
Analyses	Result	Reporting Limit	Qual	Units	BatchID	Dilution Factor	Date Analyzed
INORGANIC ANIONS BY IC E300.0							Analyst: GAR
Nitrogen, Nitrate (As N)	BRL.	2.50	Н	mg/L		10	7/27/2009 6:44 PM
Sulfate	10800	1000		mg/L		1000	7/28/2009 9:19 AM
NITROGEN, AMMONIA (AS N) E350.1				(E350.1)		Analyst: LAV
Nitrogen, Ammonia (As N)	4.74	0.200		mg/L	116242	1	7/29/2009 5:04 PM
METALS, TOTAL SW6010C				(SW3010A)		Analyst: BB
Copper	174	0.100		mg/L	116162	10	7/29/2009 2:02 PM
Iron	3020	10.0		mg/L	116162	100	7/29/2009 6:02 PM
Manganese	14.9	0.0150		mg/L	116162	1	7/29/2009 1:28 PM
Potassium	24.3	0.500		mg/L	116162	1	7/29/2009 1:28 PM
Selenium	BRL	0.0200		mg/L	116162	1	7/29/2009 1:28 PM
Sodium	605	100		mg/L	116162	100	7/29/2009 6:02 PM
Zinc	48.2	0.200		mg/L	116162	10	7/29/2009 2:02 PM
HYDROGEN ION (PH)(E150.1/SM4500 H+	B)						Analyst: CG
рН	3.40	0.01	Н	pH Units		1	7/27/2009 7:00 PM
RESIDUE, DISS.(TDS)(E160.1/SM2540C)				(E160.1)		Analyst: ML
Residue, Dissolved (TDS)	16000	100		mg/L	116361	1	7/30/2009 2:00 PM
ACIDITY (E305.1/SM2310 B)							Analyst: MAS
Acidity	7200	10.0		mg/L		1	7/30/2009 12:30 PM
FERROUS IRON SM3500-FE-D							Analyst: CG
Iron, as Ferric (Fe+3)	BRL	0.100	H	mg/L		1	7/27/2009 6:30 PM
Iron, as Ferrous (Fe+2)	3140	500	Н	mg/L		5000	7/27/2009 6:30 PM
·							

Qualifiers:	*	Value exceeds Maximum Contaminant I	_evel

BRL Below Reporting Limit

H Holding times for preparation or analysis exceeded

N Analyte not NELAC certified

B Analyte detected in the associated Method Blank

> Greater than Result value

E Estimated (Value above quantitation range)

S Spike Recovery outside limits due to matrix

Narr See Case Narrative NC Not Confirmed

< Less than Result value

ATTACHMENT D HASP

HEALTH AND S	AFETY PLAN FORM	This doci	ıment is for the	exclusive		TN & ASSO	CIATES	
TN&Associates Heal	th and Safety Program use of	TN&Associ	ates its subcon	tractors, an	d EPA.	Site Name: I	Barite Hill Nevada	Goldfields
PROJECT NAME: PROJECT#:	Barite Hill Nevada Goldfields 2005148	_	DATE:		6/10/2008	3		
LOCATION:	McCormick, South Carolina		CLIENT:			EPA		
			EPA CONT	АСТ/РНО	NE #:	Leo Fr	ancendese, 404-562	2-8772
			LOCAL/SI	TE CONTA	ACT PHONE #:			
INCIDENT DESCRI			SOURCE C					
The OSC tasked START with conducting water sampling of the main pit lake and the creek to monitor metal concentrations and water quality			INFORMA	TION:	ER Action Memo/	initial POLRE	P from epaosc.net w	vebsite
parameters. ANTICIPATED TAS	SKS:	TYPE:	Check as man	v as applical	ble			
(e.g. collect surface so								
Take water quality me and creek.	asurements and samples of the liquid in the main pi	Active		()	Landfill	()	Spill	()
		Inactive		(X)	Uncontrolled	()	Fire	()
		Secure		(X)	Industrial	()	Military	()
		Unsecu	re	()	Recovery	(X)	Unknown	()
		Enclose	d space	()	Well Field	()	Other (specify)	()
site is relatively remot topographic high ridge Within the site, the rid	D FEATURES: Include principal operations and a a Goldfields site is located approximately 3 miles so e; there are no buildings, homes, or commercial built area forming the headwaters of an unnamed tributa geline comprising the site has a high point of about mining operations remains. The pit contains approximately 3 miles so e; there are no buildings, homes, or commercial built area forming the headwaters of an unnamed tributa geline comprising the site has a high point of about mining operations remains. The pit contains approximately 3 miles so e; there are no buildings, homes, or commercial built area forming the headwaters of an unnamed tributa geline comprising the site has a high point of about mining operations remains.	outh of McC dings withing ry to Hawes 510 feet and	ormick, SC bein 0.5 miles of to Creek. The to	tween US 3' he boundary pography of evation of a	78 and US 221 on the y. The site actively m f the area consists of pproximately 480 fee	e northern side ined gold from rolling hills wit t. Storm water	1991 to 1995. The th ridgelines at an elerun on and runoff a	site is located along a levation of about 500 feet. are not controlled at the site.
SURROUNDING PO	OPULATION: () Residential () Industria	l () Com	mercial ((X) Rural	() Urban	() Other:		

HEALTH AND	SAFETY PLAN	N FORM	This	document is for the	exclusive	TN & ASSOCIATES
TN & Associates Health and Safety Program			use of TN&Assoc	riates its subcontraci	ors, and EPA.	Site Name: Barite Hill Nevada Goldfields
Goldfields. On July from ore. There are rock pile has the pot 60 million gallons o	ned gold from 1991 t 7, 1999 Nevada Gold 7 processing ponds of tential for producing f water with a pH of	o 1995. From 1995 unti dfields handed the facili ensite containing an unk- acid. Storm water run of	I Nevada Goldfields f ty's keys to SCDHEC nown amount of free- n and runoff are not colved metal content. So	iled for Chapter 7 B and abandoned the liquids. Three large, ontrolled at the site.	ankruptcy in 19 site. The facili multi-acre, wa The Main Pit fi	ncy actions, known injuries, etc. 99, the reclamation of the site was being addressed by Nevada ty used a cyanide solution in a heap leach process to extract gold ste rock piles contaminated with cyanide are left onsite. Each waste om the mining operations remains. The pit contains approximately edic water with high dissolved metal content are being released to
WASTE TYPES:	(X) Liquid	(X) Solid	() Sludge	() Gas () Unknown	() Other:
WASTE CHARAC (X) Corrosive (X) Toxic () Inert Gas	CTERISTICS: Checomology () Flammable () Volatile () Unknown	() Radioactive (X) Reactive () Other, Specify:		WORK ZONES:		Describe the Exclusion, Contamination Reduction, and Support Zones in terms on-site personnel will recognize
HAZARDS OF CO (X) Heat Stress (X) Cold Stress () Explosive/Flam () Oxygen Deficie () Radiological () Biological () Other, Specify:	attach guidelines attach guidelines mable	() Noise (X) Inorganic Chemica () Organic Chemica () Motorized Traffic () Heavy Machiner (X) Slips, Trips, & Fa	als c y	FACILITY'S PAS AND PRACTICES None found		ENT DISPOSAL METHODS

Page 2 of 8

HEALTH AND SAFETY PLAN FORM		This document is	for the exclusive	TN & ASSOCIATES		
TN&Associates Healt	h and Safety Program	use of TN&Associates its	subcontractors, and EPA.	Site Name: Barite Hill Nevada Goldfields		
HAZARDOUS MATE	CRIAL SUMMARY:	Circle waste type and estin	nate amounts by category.			
CHEMICALS: Amount/Units:	SOLIDS: Amount/Units:	SLUDGES: Amount/Units:	SOLVENTS: Amount/Units:	OILS: Amount/Units:	OTHER: Amount/Units:	
	Metals unknown	Inorganic unknown				
OVERALL HAZARD EVALUATION: ()High (X)Medium ()Low ()Unknown JUSTIFICATION: Stabilization of Main Pit lake for pyrite contact with liquid.						
FIRE/EXPLOSION P	OTENTIAL:	()High ()Medium	()Low (X)Unknown			
INFORMATION COM	NFORMATION COMPLETE: ()Complete ()Incomplete (X)Best Available at Current Time					

HEALTH AND SAF			This document is	s for the exclusive use of TN&Associates its subcontractors, and EPA	
TN & Associates Health		OCHA			Site Name: Barite Hill Nevada Goldfields
KNOWN CONTAMINANTS	NIOSH REL (ST if Available) ppm or mg/m3 (specify)	OSHA PEL (ST if Available) ppm or mg/m3 (specify)	IDLH ppm or mg/m3 (specify)	SYMPTOMS & EFFECTS OF ACUTE EXPOSURE	PHOTO IONIZATION POTENTIAL
NA N. ()	NT N		** **	An I a di la Mapa a la	
NA = Not Available	NE = None Establis	hea	U = Unknown	Attach, to this plan, an MSDS for each chemical you will use at the site.	
S = Soil	SW = Surface Water	T = Tailings		SD = Sediment	
A = Air	GW = Ground Water	SL = Sludge	D = Drums	OFF = Off-Site	

HEALTH AND SAFETY PLAN FORM TN & Associates Health and Safety Program				This document is for the exclusive use of			TN & ASSOCIATES		
			TNc	&Associates its subcon	tractors, and	Site Name: Barite Hill Nevada Goldfields			
Tasl	k Descriptio	n / PPE / Pers	sonnel & Res	ponsibilities	(attach additio	nal sheets as	necessary)		
Task 1 Description	Site liquid s	ampling/In-sit	u monitoring					Type Intrusive	Hazard Schedule High
Primary	Respiratory	APR	combo		Contingency	Respiratory:	APR	combo	
Level		Safety Glasses	Hard Hat		Level		Safety Glasses	Hard Hat	
Modified D	Boots:	Steel-Toe	Latex Booti	e	Modified D	Boots:	Steel-Toe	Latex Bootie	
	Gloves:	Inner: Nitrile	Outer:		To C	Gloves:	Inner: Nitrile	Outer:	
PPE:	Clothing:	Tyvek Coveral			PPE:	Clothing:	Tyvek Coverall		
Task 2 Description								Type	Hazard Schedule
Primary	Respiratory:				Contingency	Respiratory:		1	1
Level	Evewear:				Level				
	Boots:					Boots:			
	Gloves:					Gloves:			
PPE:	Clothing:				PPE:	Clothing:			
Task 3 Description					•			Туре	Hazard Schedule
Primary	Respiratory:				Contingency	Respiratory:		1	
Level	Evewear.				Level	Evewear.	-		
20,01	Boots:				20,61	Boots.			
	Gloves:					Gloves:			
PPE:	Clothing:				PPE:	3			
Task 4 Description	3 3 3 3					<u> </u>		Туре	Hazard Schedule
Primary	Respiratory:				Contingency	Respiratory:		1	-
Level	Evewear:				Level	Evewear:			
	Boots:					Boots:			
	Gloves:					Gloves:			
PPE:	Clothing:				PPE:	Clothing:			
PERSONNE		PONSIBILIT	TIES		•				
Name		Company/Ag	gency	Training			Responsibilit		
Jorge Sanchez		TN&A		OSHA			Safety and He		
Russell Hende		TN&A		OSHA			Safety and He		
Dannena Bow	man	TN&A		OSHA			Safety and He	alth	

HEALTH AND SAFETY PLAN FORM			This document is for the exclusive use of	TN & ASSOCIATES
TN & Ass	sociates Health and Sa	fety Program	TN&Associates its subcontractors, and EPA	Site Name: Barite Hill Nevada Goldfields
Monitorin	g Equipment:	Specify by task.	Indicate type as necessary. Attach additional sheets if needed.	
Tasks: 1	Instrument: pH Meter	Level:	Action Guidelines:	Comments:
Tasks:	Instrument:	Level:	Action Guidelines:	Comments:
Tasks:	Instrument:	Level:	Action Guidelines:	Comments:
Tasks:	Instrument:	Level:	Action Guidelines:	Comments:
Tasks:	Instrument:	Level:	Action Guidelines:	Comments:
Tasks:	Instrument:	Level:	Action Guidelines:	Comments:

HEALTH AND SAFETY PLAN FORM This document is for the exc	lusive use of TN&Associates its TN & A	SSOCIATES		
TN&Associates Health and Safety Program subcontract	tors, and EPA. Site Nai	ne: Barite Hill Nevada Go	oldfields	
EMERGENCY CONTACTS	EMERGENCY CONTACTS	NAME	PHONE	
Site Telephone EPA Release Report # TN&Assoc 24-Hr Emergency # 678-255-5538 Facility Management Other (specify) CHEMTREC Emergency #: 1-800-424-9300 CONTINGENCY PLANS: Summarize below Contact corporate Health and Saftey officer, William Fink, at 414-234-7845	Health and Safety Manager Project Manager Site Safety Coordinator Client Contact (EPA RPM) Other (EPA HRS coordinator) State Agency State Spill Number Fire Department Police Department State Police Health Department Poison Control Center Occupational Physician MEDICAL EMERGENCY Hospital Name:	Project Manager Russell Henderson 678- Site Safety Coordinator Jorge Sanchez 678- Client Contact (EPA RPM) Other (EPA HRS coordinator) State Agency State Spill Number Fire Department Police Department State Police Health Department Poison Control Center 800- Occupational Physician Dr. Jerry Berke, 800- Health Resources MEDICAL EMERGENCY		
HEALTH AND SAFETY PLAN APPROVALS Prepared by Date Date Date Date	_	ched sheet)		
HSM Signature Date				

HEALTH AND SAFETY PLAN SIGNATURE FORM

TN & Associates Health and Safety Program

All site personnel must sign this form indicating receipt of the H&SP. Keep this original on site. It becomes part of the permanent project files. Send a copy to the Health and Safety Manager (HSM).

SITE NAME/NUMBER:	Barite Hill Nevada Goldfields / 2005148
DIVISION/LOCATION:	T N & Associates, Marietta, GA.
DATE:	

I understand, and agree to comply with, the provisions of the above referenced H&SP for work activities on this project. I agree to report any injuries, illnesses or exposure incidents to the site Health and Safety Coordinator (SHSC). I agree to inform the SHSC about any drugs (legal and illegal) that I take within three days of site work.

PRINTED NAME	SIGNATURE	DATE

Page 8 of 8